

Integrated Analysis of Thermal/Structural/Optical Systems (OptiOpt[™] Part 1)

TFAWS 2002

Brent Cullimore

C&R TECHNOLOGIES 303.971.0292 Fax 303.971.0035

www.crtech.com

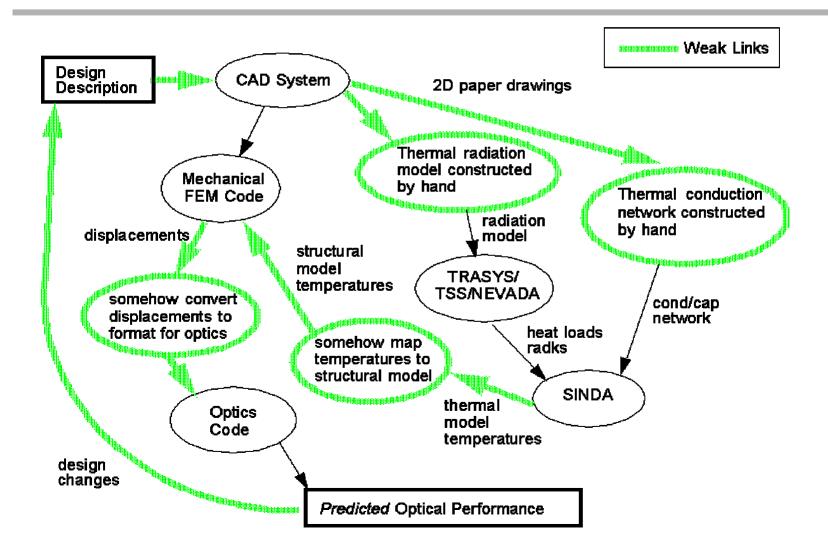
Acknowledgements

Sponsor

➡ NASA Goddard Space Flight Center, NAS5-99165

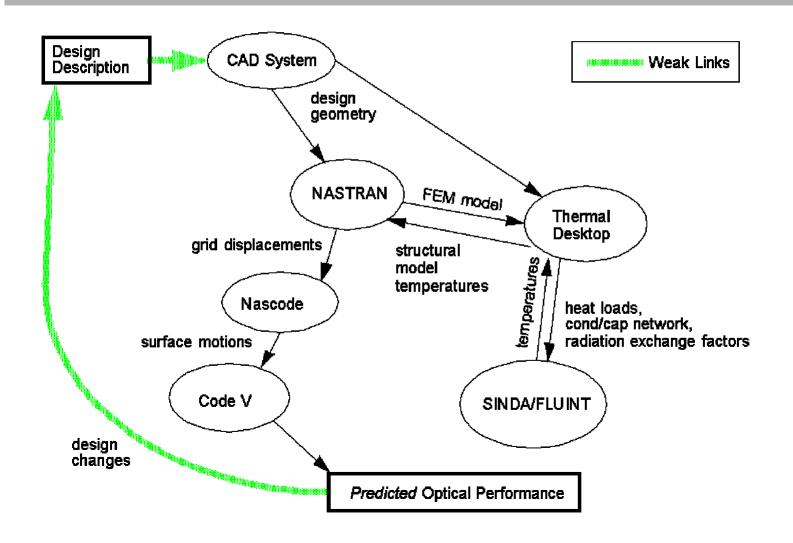
➡Jeff Bolognese

- Team Members
 - ➡ Sigmadyne
 - →Dr. Victor Genberg
 - → ORA
 - ➡Mark Kahan
 - C&R Technologies
 - ⇒Tim Panczak, Jane Baumann



The Problem

- Thermal, structural, and optical engineers work independently using unrelated tools
 - Structural requirements derived from optical ones: maximum deflections
 - Thermal requirements derived from structural ones: maximum temperature gradients
- Worst-cases are stacked up: overdesign
- One approach: a single tool that replaces industry standards like NASTRAN, SINDA
 - Limited acceptance by specialists
 - appropriate for conceptual design only



Prior State of Art

OptiOpt[™] Improvements (Part 1)

C&R TECHNOLOGIES

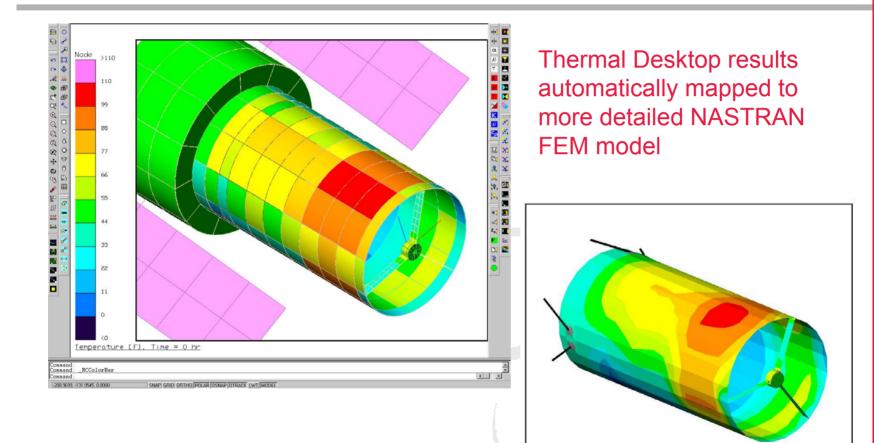
Elimination of Analysis Bottlenecks

- Thermal (Thermal Desktop®)
 - CAD-based and FEM-compatible analyzer
 - Fully parameterized with API for automated tasking
- Thermal to Structural (MSC/NASTRAN®)
 - Temperature mapping to related (one to one) or independent structural model
- Structural to Optical (Code V®)
 - Deflections mapped to independent optical performance model

Significant Improvements

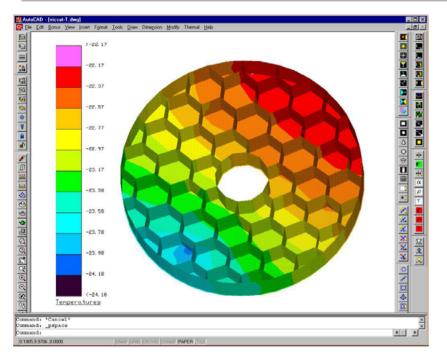
Thermal/structural

Analysis integration for non-optical applications


- Automated and accurate results mapping
 - ➡no need to use structural model as thermal model
 - no need to use one-to-one mapping (FEM -> network)
 - no need to use structural model for interpolation
 - thermal and structural models can be created independently

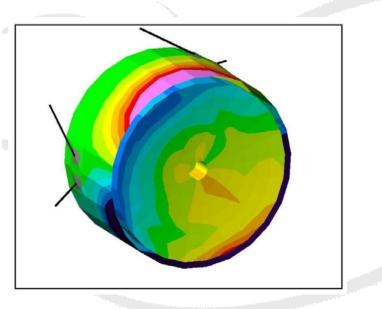
➡thermal model can use any mix of FD, FEM

- Thermal-only
- Structural/optical



Automatic Temperature Mapping

Thermal & Structural Models Developed Independently



The "trick:"

- import FEM node *locations*, not *model*
- use *thermal* model as basis: greatest accuracy

Thermal model consists of both FD and FEM components.

- FD: solar arrays and body
- FEM: mirrors and metering structures.

Significant Improvements

- Thermal/structural
- Thermal-only
 - Parametric thermal analysis
 - Dynamic Mode:
 - Use SINDA/FLUINT as a "scripting language"
 - Access SINDA/FLUINT Advanced Design Modules
 - ➡ Optimization
 - Automated correlation to test data
 - Automated worst-case scenario seeking
 - Statistical design: reliability assessments

Structural/optical

.

Parametric Thermal Modeling

Symbol Editor		
New Symbol Name:	Add	
name, evaluated result, e	expression:	
pfD Pffpu pfH pfKA pi PMbody PMthick PMthick PMthruG rtd shellCP shellCP shellCP shellCP shellK shellEN shellThk shellWall SMshellT SMthick SMthruG smZ spiderT Tdetect	0.05 0.05 0 0 7.5 7.5 0.0019635 .25*pi*pfD^2 3.14159 3.141592653589793 0.01 .01 Thermal Model Date Subdivision Numbering Radiation Cond/Cap Contact Insulation Surfation © Generate cond/cap data. Cond submodel: SHELL ♥ Material: invar Thickness: 0.02 in Surfation Surfation Symbol Manager	
	Material Orientation CS name: Not Used Material: DEFAULT Separation: 0 in Not Used Material: DEFAULT Thickness: 0.0393701 in Material: DEFAULT Thickness: 0.0393701 in OK Cancel Help	
	OK Cancel Help	

C&R TECHNOLOGIES

Thermal Desktop "Dynamic Mode"

- Radiation or conductance capacitance calculations can be invoked "on the fly" from within SINDA/FLUINT
- Full access to SINDA Advanced Design Modules from within TD Case Set Manager
 Solver Procedure Edit Search

Case Set Information - beta90ss Radiation Tasks S/F Calculations S/F Output SI	NDA Dynamic Advanced	l Props Symbols	CALL TDSETDES if(init .eq. 0)then init=1 CALL TDCASE else call tdcase2('cc')
Dynamic SINDA Options Use Dynamic SINDA Show Temperatures While Calculating Text Filename: dynTemp7.txt	Solver Data Design* Constraint Control Procedure* LOGIC 0 LOGIC 1 LOGIC 2 Output	Reliability Data Random Constraint Control Procedure Output	endif OK

The GMM/TMM Distinction is Gone!

- GMM: RadCAD, TRASYS, TSS, ESARAD, etc.
- TMM: SINDA, ESATAN, etc.
- "Dynamic Mode" means TMM and GMM linked
- Some of the new possibilities:
 - Size a heat pipe radiator
 - Simulate louvers and variable- ε coatings directly
 - \blacktriangleright Find the worst-case β angle and solar panel position
 - Automatically correlate optical properties to test

Significant Improvements

- Thermal/structural
- Thermal-only
- Structural/optical
 - Conversion utility from NASTRAN deflections to Code V optical surface displacements

Conclusions

- Significant improvements were made in the underlying codes useful for subset analyses:
 - thermal/structural
 - ➡thermal only
 - ➡structural/optical
- Such tight integration of otherwise independent models enables the next step:
 - automatically ("hands off") searching for an optimal thermal/structural/optical design